A membership or website registration may be required for unrestricted access to all content including full text of articles

Handbook of Pediatric Electroencephalography by Veena Kander now on ICNApedia VLE

Predicting Surgery Targets in Temporal Lobe Epilepsy

Predicting Surgery Targets in Temporal Lobe Epilepsy

Hot
 
0.0
 
0.0 (0)
7429   0   0   0   0   0
Write Review
Citation
Predicting Surgery Targets in Temporal Lobe Epilepsy through Structural Connectome Based Simulations, Hutchings F, Han CE, Keller SS, Weber B, Taylor PN, Kaiser M, PLoS Computational Biology, doi:10.1371/journal.pcbi.1004642, published 10 December 2015.
Publication Type

Temporal lobe epilepsy (TLE) is a prevalent neurological disorder resulting in disruptive seizures. In the case of drug resistant epilepsy resective surgery is often considered. This is a procedure hampered by unpredictable success rates, with many patients continuing to have seizures even after surgery.

In this study scientists at Newcastle University applied a computational model of epilepsy to patient specific structural connectivity derived from diffusion tensor imaging (DTI) of 22 individuals with left TLE and 39 healthy controls.

They validated the model by examining patient-control differences in simulated seizure onset time and network location and investigated the potential of the model for surgery prediction by performing in silico surgical resections, removing nodes from patient networks and comparing seizure likelihood post-surgery to pre-surgery simulations.

They found that, patients tend to transit from non-epileptic to epileptic states more often than controls in the model. Regions in the left hemisphere (particularly within temporal and subcortical regions) that are known to be involved in TLE were the most frequent starting points for seizures in patients in the model.

In addition, their analysis also implicates regions in the contralateral and frontal locations which may play a role in seizure spreading or surgery resistance. Finally, the model predicts that patient-specific surgery (resection areas chosen on an individual, model-prompted, basis and not following a predefined procedure) may lead to better outcomes than the currently used routine clinical procedure.

Taken together this work provides a first step towards patient specific computational modelling of epilepsy surgery in order to inform treatment strategies in individuals.

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004642

Reader reviews

No reader reviews
To write a review please register or