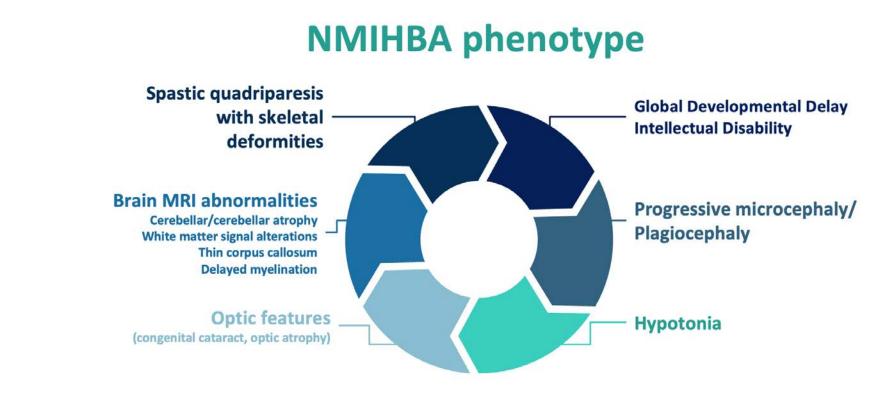


Expanding phenotypic diversity of PRUNE1 related disorders: an experience of four cases in a tertiary center


<u>Didem Soydemir^{1,}</u>, Çagatay Gunay¹, Sanem Yılmaz², Mert Karakaya³, Sebahattin Cirak⁴, Brunhilde Wirth³, Hasan Tekgül², Semra Hiz¹⁵, Reza Maroofian⁶, Uluc Yis¹

01

INTRODUCTION

PRUNE 1 gene on chromosome 1q21.3

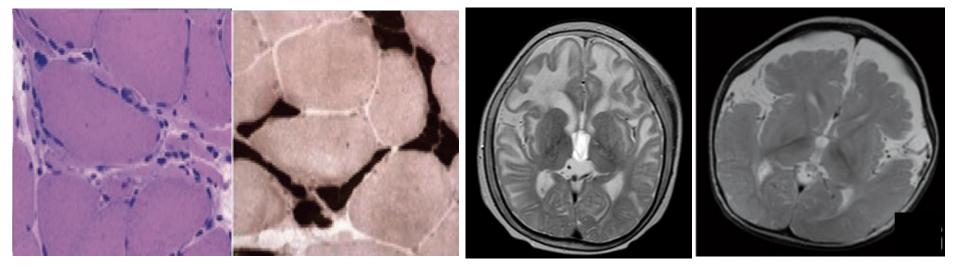
- a member of the DHH(Asp-His-His) phosphoesterases family
- key role in cell migration, differentiation and proliferation¹
- intensely expressed in early stages of normal cortical development
- **NMIHBA(OMIM#617481)** as the most common phenotype (summarized in **Figure-1.**)
- Homozygous or compound heterozygous mutations responsible for the disease, especially clustered in DHH domain¹

02

AIMS and METHODS

- Investigational enthusiasm by delineation of atypical presentations in recent reports^{2,3}
- First aim to emphasize the phenotypic heterogenity and diversity of NMIHBA disease
- Secondly to reveal the most frequent variant of our series
- We describe the clinical characteristics of our patients underwent genetic analysis with whole exome/genome sequencing (WES/WGS)

¹ Dokuz Eylul University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Izmir, Turkey ² Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Izmir, Turkey


³ Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases, Cologne, Germany

⁴ University of Cologne Faculty of Medicine and University Hospital, Department of Pediatrics, Center for Molecular Medicine (CMMC), Cologne, Germany ⁵ Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey

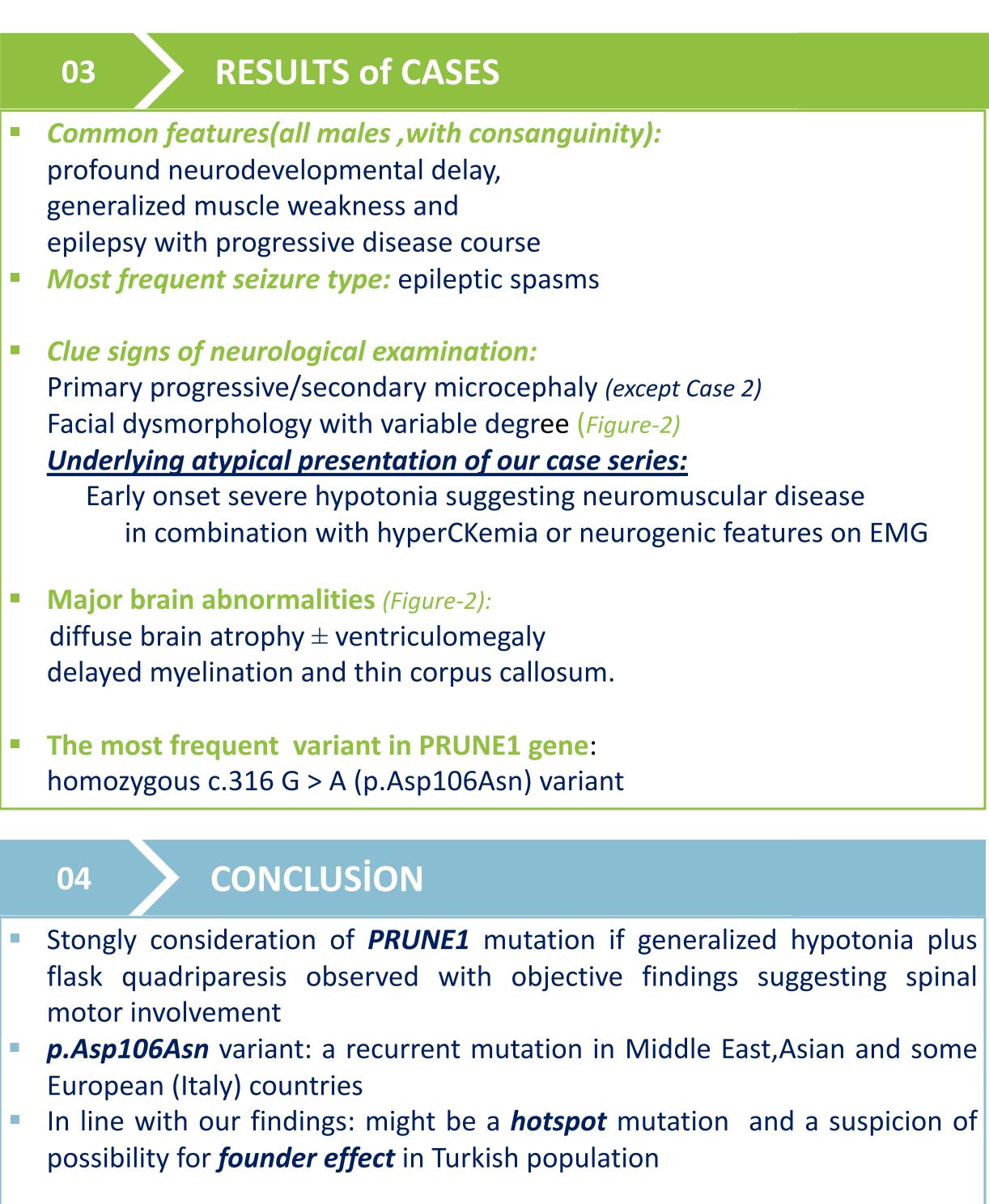
⁶ Queen Square Institute of Neurology, University College London, Department of Neuromuscular Disorders ,London, UK

Clinical phenotypes: Patient images demonstrating facial dysmorphology, flask/spastic quadriparesis with generalized hypotonia and skeletal deformities

Muscle biopsy of *Case 3*: clustered, distributed atrophic type 2 fibers

Neuroimaging of Case 1 (L) and Case 4 (R) diffuse cerebral atrophy and white matter changes

Figure-2: Clinical phenotypes and some investigational tests of our cases with PRUNE1 mutation (detailed information below in table)


Investigational Tests	Case 1	Case 2	Case 3	Case 4
EEG	Multifocal spike and sharp waves Slow background	Multifocal spike and sharp waves Slow background	Multifocal spike and sharp waves Slow background	N.A
Brain MRI	Diffuse brain atrophy WM changes Ventriculomegaly Thin Corpus Callosum	Diffuse brain atrophy Subdural collection Ventriculomegaly Thin Corpus Callosum Delayed myelination	Ventriculomegaly Posterior arachnoidal cysts	Diffuse brain atrophy Delayed myelination Inferior vermis hypoplasia
CK levels (IU/L)	347 IU/L	257 IU/L	1940 IU/L	N.A
Electromyography (EMG)	Unsuitable for assessment (severe contarctures)	N.A	Neurogenic	Neurogenic
Muscle Biopsy	Nonspesific	Not done	Type 2 fiber atrophy Type 1 predominance	Not done
Molecular Genetic Analysis	PRUNE 1 Homozygous	PRUNE 1 Homozygous	PRUNE 1 Homozygous	PRUNE 1 Homozygous
DNA level	c.316 G>A	c.316 G>A	c.316 G>A	c.874_875insA
Protein level	p.Asp106Asn	p.Asp106Asn	p.Asp106Asn	p.H292Qfs*3

REFERENCES

LZollo M. Ahmed M. Ferrucci V et al.PRUNE is crucial for normal brain deve 2.Imagawa E, Yamamoto Y, Mitsuhashi S et al. PRUNE1-related disorder: Expanding the clinical spectrum. Clinical genetics 2018. 94(3-4). 362-367

3. Jacomino M. Fiorillo C. Torella A et al. Spinal motor neuron involvement in a patient with homozygous PRUNE mutation. Eur J Paediatr Neurol 2018, 22.3: 541-54

