Neuro-degeneration with Brain Iron Accumulation in 18 Indian families: a case series highlighting phenotypic and genotypic diversity

Amita Moirangthem¹, Haseena Sait¹, Somya Srivastava¹, Manmohan Pandey¹, Deepak Ravichandran³, Anju Shukla ², Kausik Mandal¹, Deepti Saxena¹, Arya Shambhavi¹, Purvi Majethia², Lakshmi Priya Rao², Suhasini Sharma⁴, Shubha R Phadke¹

1. Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India. 2. Kasturba Medical College, Manipal, Karnataka, India. 3. Medanta Hospital, Lucknow. 4. Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India

INTRODUCTION

- Neuronal Brain Iron Accumulation (NBIA) are a group of genetic disorders characterized by abnormal accumulation of iron in the basal ganglia.
- Progressive movement disorder with variable neuropsychiatric abnormalities, spasticity, ocular involvement and impaired cognition
- 10 genes are known to be associated with various subtypes of NBIA: PANK2, PLA2G6, C19ORF12, FA2H, CRAT, FTL, COASY, WDR45, REPS1, ATP13A.

OBJECTIVES

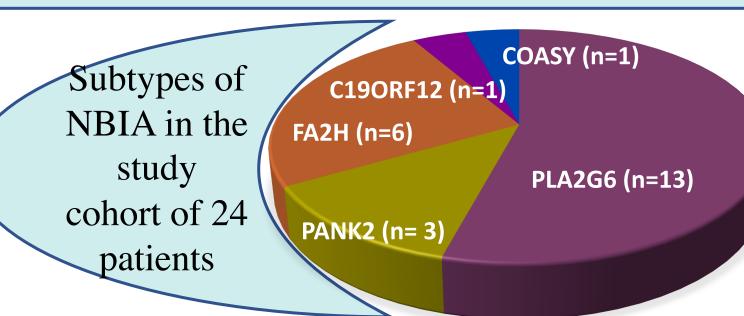
- To describe the clinical & radiological findings of patients with NBIA
- Molecular characterization of the underlying genetic etiology.

METHODOLOGY

Study design: Observational study at 2 tertiary level medical genetics centres in India.

Inclusion criteria: Patients with NBIA during the 2016-2021 period based on confirmed genetic studies.

Clinical data: Demographic details, family history, clinical details and neuroimaging findings were collected.

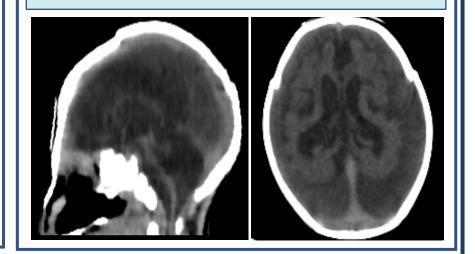

Genetic testing:

- Exome sequencing on genomic DNA of the proband
- Variant assessment as per ACMG-AMP guidelines
- Segregation of variants in family members by Sanger.

RESULTS

- 24 patients with NBIA from 18 unrelated families
- Age: 1 month- 18 years
- 5 sub-types of NBIA detected; PLAN most common
- Consanguinity: 4/18 (22%) & disease recurrence: 9/18 (50%)
- Iron deposition on MRI in only 6 out of 20 patients.

Acknowledgements: 1. DBT, India, Grant # BT/PR26428/MED/12/783/2017; ICMR, India, grant #33/9/2019-TF/Rare/BMS & 33/2/2019-TF/Rare/BMS


Genotype profile of study cohort				
ID	Gene	variants	zygosity	class
F1	PLA2G6	c.1799G>A / c.1974C>A	Comp het	P/LP
F2	PLA2G6	Exon 3-7 duplication*	Hom	P
F3	PLA2G6	c.1799G>A / c.2370T>G	Comp het	P/P
F4	PLA2G6	c.1690del*	Hom	LP
F5	PLA2G6	c.2200T>C* / c.2222G>A	Comp het	LP/P
F6	PLA2G6	c.1799G>A / c.2370T>G	Comp het	P/P
F7	PLA2G6	c.1982C>T	Hom	LP
F8	PLA2G6	c.2370T>G / c.668C>T	Comp het	P/LP
F9	PLA2G6	c.2128 del*	Hom	P
F10	PANK2	c.509_521 del*/ c.1700T>A*	Comp het	P/P
F11	PANK2	c.1594C>T	Hom	VUS
F12	PANK2	c.652A>C*	Hom	VUS
F13	FA2H	c.491T>C*	Hom	VUS
F14	FA2H	c.589C>T	Hom	P
F15	FA2H	c.443C>T*	Hom	VUS
F16	FA2H	c.1039+2T>G / c.232G>A	Comp het	P/LP
F17	C190RF12	c.161G>T	Hom	P
F18	COASY	c.1486-3C>G	Hom	LP
*novel; P-pathogenic; LP-likely pathogenic; VUS-variant of uncertain significance				

PLA2G6-associated neurodegeneration (PLAN)

- 13 patients from 9 families
- Majority- Infantile neuroaxonal dystrophy
- 2 patients Atypical Neuroaxonal dystrophy
- Features: neuroregression (11/13); dystonia (4/13); optic atrophy (8/11), seizures (4/13)
- Rapid disease progression; 3 patients died in early childhood.
- MRI: cerebellar atrophy universally; variable white matter involvement and brainstem atrophy. Iron accumulation in only 1 patient with ANAD

COASY associated neurodegeneration (CoPAN)

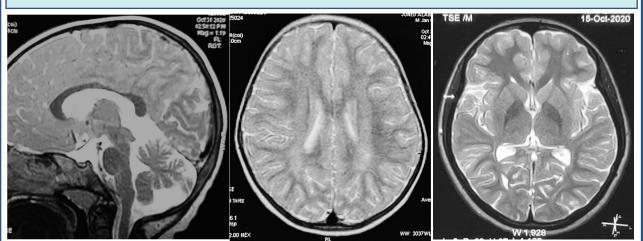
Neonate with severe microcephaly, spasticity, arthrogryposis Prenatal onset severe form of CoPAN

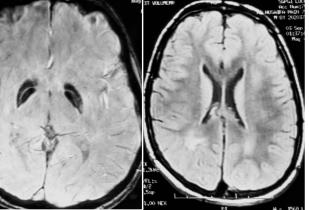
Iron accu-

mulation

in GP, PV

hyperinten


Pantothenate Kinase-Associated neurodegeneration (PKAN)


- 3 individuals, gait abnormality; dystonia; Behavioural disturbances visual deficit.
- Classic "eye of a tiger" sign in 2 pts.

Fatty acid hydroxylase-associated neurodegeneration (FAHN)

- 5 patients from 3 families
- Gait abnormality; dystonia; abnormal cognition
- Iron accumulation in 1pt (13y) only.

Mitochondrial membraneassociated neurodegeneration (MPAN)

Juvenile-onset gait abnormality; rapid cognitive decline; focal dystonia, choreoathetosis; bradykinesia

CONCLUSION

Largest cohort of molecularly characterized pediatric patients with NBIA from Indian subcontinent.

Clinical presentation is varied and not restricted to extrapyramidal signs

- PLAN is underdiagnosed due to early onset & atypical features
- Iron accumulation on MRI –considered hallmark but inconsistent feature
- 21 variants across 5 genes described adding 9 novel variants.

References:

Gregory A et al., J Med Genet. 2009;46(2):73-80. 2. Richards et al., Genet. Med. 2015;17; 405–424.; 3. Bharadwaj NK et al., Brain Dev. 2021;43(10):1013-1022.