ICNC2018 Abstracts & Symposia Proposals, ICNC 2014

Font Size: 
Serum miR-206 and other muscle-specific microRNAs as non-invasive biomarkers for Duchenne muscular dystrophy
Jun Hu

Building: Bourbon Cataratas Convention Centre, Foz do Iguaçu
Room: Cataratas II
Date: 2014-05-08 03:45 PM – 04:00 PM
Last modified: 2014-02-09

Abstract


Abstract

Creatine kinase (CK) has been utilized as a diagnostic marker for Duchenne muscular dystrophy (DMD), but it correlates less well with the DMD pathological progression. In this study, we hypothesized that muscle-specific microRNAs (miR-1, -133 and -206) in serum may be useful for monitoring the DMD pathological progression, and explored the possibility of these miRNAs as potential non-invasive biomarkers for the disease. By using real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in a randomized and controlled trial, we detected miR-1, -133 and -206 were significantly over-expressed in the serum of 39 children with DMD (up to 3.20 ± 1.20, 2-ΔΔCt): almost 10- to 100- fold enriched in comparison to samples from the healthy controls (less than 1.15 ± 0.34, 2-ΔΔCt). To determine whether these miRNAs were related to the clinical features of children with DMD, we analyzed the associations compared to CK. There were very good inverse correlations between the levels of these miRNAs, especially miR-206, and functional performances: high levels corresponded to low muscle strength, muscle function, and quality of life (QoL). Moreover, by receiver operating characteristic (ROC) curves analyses, we revealed that these miRNAs, especially miR-206, were able to discriminate DMD from controls. Thus, miR-206 and other muscle-specific miRNAs in serum are useful for monitoring the DMD pathological progression, so as potential non-invasive biomarkers for the disease.

Keywords


microRNA; biomarker; serum; muscular dystrophy, Duchenne; child

References


Ai, J., Zhang, R., Li, Y., Pu, J., Lu, Y., Jiao, J., et al. (2010). Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem. Biophys. Res. Commun. 391, 73-77.

Brooke, M. H., Fenichel, G. M., Griggs, R. C., Mendell, J. R., Moxley, R., Florence, J., et al. (1989). Duchenne muscular dystrophy: patterns of clinical progression and effects of supportive therapy. Neurology 39, 475-481.

Brooke, M. H., Fenichel, G. M., Griggs, R. C., Mendell, J. R., Moxley, R., Miller, J. P., et al. (1983). Clinical investigation in Duchenne dystrophy: 2. Determination of the "power" of therapeutic trials based on the natural history. Muscle Nerve, 6, 91-103.

Bushby, K., Finkel, R., Birnkrant, D. J., Case, L. E., Clemens, P. R., Cripe, L., et al. (2010). Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 9, 77-93.

Cacchiarelli, D., Incitti, T., Martone, J., Cesana, M., Cazzella, V., Santini, T., et al. (2011). miR-31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy. EMBO Rep. 12, 136-141.

Cacchiarelli, D., Legnini, I., Martone, J., Cazzella, V., D'Amico, A., Bertini, E., et al. (2011). miRNAs as serum biomarkers for Duchenne muscular dystrophy. EMBO Mol. Med. 3, 258-265.

Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., et al. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228-233.

Chen, J. F., Tao, Y., Li, J., Deng, Z., Yan, Z., Xiao, X., et al. (2010). microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J. Cell Biol. 190, 867-879.

Chen, K., and Rajewsky, N. (2007). The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet. 8, 93-103.

Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18, 997-1006.

Dreyfus, J. C., Schapira, F., Demos, J., Rosa, R., and Schapira, G. (1966). The value of serum enzyme determinations in the identification of dystrophic carriers. Ann. N. Y. Acad. Sci. 138, 304-314.

Emery, A. E. (1991). Population frequencies of inherited neuromuscular diseases--a world survey. Neuromuscul. Disord. 1, 19-29.

Florence, J. M., Pandya, S., King, W. M., Robison, J. D., Signore, L. C., Wentzell, M., et al. (1984). Clinical trials in Duchenne dystrophy. Standardization and reliability of evaluation procedures. Phys. Ther. 64, 41-45.

Gidlof, O., Smith, J. G., Miyazu, K., Gilje, P., Spencer, A., Blomquist, S., et al. (2013). Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc. Disord. 13, 1471-2261.

Hu, J., Jiang, L., Hong, S., Kong, M. and Ye, Y. (2013). Reliability and validity of the Chinese version of the pediatric quality of life inventoryTM (PedsQLTM) 3.0 neuromuscular module in children with Duchenne muscular dystrophy. Health Qual. Life Outcomes 11:47.

Kawai, H., Sebe, T., Nishino, H., Nishida, Y., and Saito, S. (1991). Light and electron microscopic studies on localization of myoglobin in skeletal muscle cells in neuromuscular diseases. Muscle Nerve 14, 342-347.

Kim, H. K., Laor, T., Horn, P. S., Racadio, J. M., Wong, B., and Dardzinski, B. J. (2010). T2 mapping in Duchenne muscular dystrophy: Distribution of Disease Activity and Correlation with Clinical Assessments. Radiology 255, 899-908.

Kim, H. K., Lee, Y. S., Sivaprasad, U., Malhotra, A., and Dutta, A. (2006). Muscle-specific microRNA miR-206 promotes muscle differentiation. J. Cell Biol. 174, 677-687.

Kunkel, L. M., Hejtmancik, J. F., Caskey, C. T., Speer, A., Monaco, A. P., Middlesworth, W., et al. (1986). Analysis of deletions in DNA from patients with Becker and Duchenne muscular dystrophy. Nature 322, 73-77.

Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., et al. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401-1414.

Li, S., Czubryt, M. P., McAnally, J., Bassel-Duby, R., Richardson, J. A., Wiebel, F. F., et al. (2005). Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proc. Natl. Acad. Sci. U. S. A. 102, 1082-1087.

Liu, N., Williams, A. H., Maxeiner, J. M., Bezprozvannaya, S., Shelton, J. M., Richardson, J. A., et al. (2012). microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J. Clin. Invest. 122, 2054-2065.

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.

Malm, C., Nyberg, P., Engstrom, M., Sjodin, B., Lenkei, R., Ekblom, B., et al. (2000). Immunological changes in human skeletal muscle and blood after eccentric exercise and multiple biopsies. J. Physiol. 1, 243-262.

Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. U. S. A. 105, 10513-10518.

Mizuno, H., Nakamura, A., Aoki, Y., Ito, N., Kishi, S., Yamamoto, K., et al. (2011). Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy. PLoS One, 6, e18388.

Percy, M. E., Andrews, D. F., and Thompson, M. W. (1982). Duchenne muscular dystrophy carrier detection using logistic discrimination: serum creatine kinase, hemopexin, pyruvate kinase, and lactate dehydrogenase in combination. Am J Med. Genet. 13, 27-38.

Schapira, G., Laugier, P., Rochette, J., Berger, G., Katz, P., and Perrin, J. (1987). Detection of duchenne muscular dystrophy carriers-quantitative echography and creatine kinasemia. Hum. Genet. 75, 19-23

Sibley, C. R., and Wood, M. J. (2011). The miRNA pathway in neurological and skeletal muscle disease: implications for pathogenesis and therapy. J. Mol. Med. (Berl) 89, 1065-1077.

Soreide, K. (2009). Receiver-operating characteristic curve analysis in diagnostic, prognostic and predictive biomarker research. J. Clin. Pathol. 62, 1-5.

Starkey Lewis, P. J., Dear, J., Platt, V., Simpson, K. J., Craig, D. G., Antoine, D. J., et al. (2011). Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology 54, 1767-1776.

Urganci, N., Arapoglu, M., Serdaroglu, P., and Nuhoglu, A. (2006). Incidental raised transaminases: a clue to muscle disease. Ann. Trop. Paediatr. 26, 345-348.

Ventura-Clapier, R., Kuznetsov, A., Veksler, V., Boehm, E., and Anflous, K. (1998). Functional coupling of creatine kinases in muscles: species and tissue specificity. Mol. Cell Biochem. 184, 231-247.

Williams, A. H., Valdez, G., Moresi, V., Qi, X., McAnally, J., Elliott, J. L., et al. (2009). MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326, 1549-1554.

Zatz, M., Rapaport, D., Vainzof, M., Passos-Bueno, M. R., Bortolini, E. R., Pavanello Rde, C., et al. (1991). Serum creatine-kinase (CK) and pyruvate-kinase (PK) activities in Duchenne (DMD) as compared with Becker (BMD) muscular dystrophy. J. Neurol. Sci. 102, 190-196.

Zhang, Y., Jia, Y., Zheng, R., Guo, Y., Wang, Y., Guo, H., et al. (2010). Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. Clin. Chem. 56, 1830-1838.

Conference registration is required in order to view papers.